COLLABORATIVE-PREDICTION-BASED RECURSIVE FILTERING FOR NONLINEAR SYSTEMS WITH SENSOR SATURATION UNDER DUTY CYCLE SCHEDULING

Collaborative-prediction-based recursive filtering for nonlinear systems with sensor saturation under duty cycle scheduling

Collaborative-prediction-based recursive filtering for nonlinear systems with sensor saturation under duty cycle scheduling

Blog Article

In this paper, a recursive filtering problem is analyzed for nonlinear systems with sensor saturation under duty cycle scheduling (DCS).The sensor saturation Shot Glasses is taken into account to describe practical engineering better.The DCS is introduced to conserve energy by alternating sensor nodes between active and dormant states.

The considered problem aims to design a collaboration-prediction-based recursive filtering algorithm for nonlinear systems with sensor saturation such that, under the sparse measurements due to DCS, satisfactory filtering performance is guaranteed.By solving a set of matrix difference equations, the upper bound on the filtering error covariance is first obtained, and then the gain matrix of the filter that minimizes the upper limit is calculated.In COSMETICS addition, the boundedness of the upper bound of the filtering error covariance is analyzed.

Finally, the effectiveness of the proposed collaboration-prediction-based recursive filtering algorithm is verified by the simulation example.

Report this page